

Cristiane Silva Rocha Damasceno

Modelagem Geológica e Geomecânica 3D e Análises de Estabilidade 2D dos Taludes da Mina de Morro da Mina, Conselheiro Lafaiete, MG, Brasil

DISSERTAÇÃO DE MESTRADO

DEPARTAMENTO DE ENGENHARIA CIVIL

Programa de Pós-Graduação em Engenharia Civil

Rio de Janeiro, fevereiro de 2008

Cristiane Silva Rocha Damasceno

Modelagem Geológica e Geomecânica 3D e Análises de Estabilidade 2D dos Taludes da Mina de Morro da Mina, Conselheiro Lafaiete, MG, Brasil

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio.

Orientador: Sérgio Augusto Barreto da Fontoura

Rio de Janeiro Fevereiro de 2008

Cristiane Silva Rocha Damasceno

Modelagem Geológica e Geomecânica 3D e Análises de Estabilidade 2D dos Taludes da Mina de Morro da Mina, Conselheiro Lafaiete, MG, Brasil

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> **Prof. Sérgio Augusto Barreto da Fontoura** Orientador Departamento de Engenharia Civil – PUC-Rio

Prof. Alberto de Sampaio Ferraz Jardim Sayão Departamento de Engenharia Civil – PUC-Rio

Prof. Ana Cristina Castro Fontenla Sieira Departamento de Estruturas e Fundações – UERJ

> Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 26 de fevereiro de 2008

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Cristiane Silva Rocha Damasceno

Graduou-se em Engenharia Civil – ênfase em Estruturas, na UERJ (Universidade do Estado do Rio de Janeiro) em 2005/1. Presta serviço voluntário de caráter filantrópico, atuando como responsável técnica pela execução de furos de sondagens, para dimensionamento de estrutura e construção de Salões do Reino das Testemunhas de Jeová.

Ficha Catalográfica

Damasceno, Cristiane Silva Rocha

Modelagem Geológica e Geomecânica 3D e Análises de Estabilidade 2D dos Taludes da Mina de Morro da Mina, Conselheiro Lafaiete, MG, Brasil / Cristiane Silva Rocha Damasceno; orientador: Sérgio Augusto Barreto da Fontoura. – 2008.

165 f.: il.; 30 cm

Dissertação (Mestrado em Engenharia Civil) – Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2008.

Inclui bibliografia.

 Engenharia civil – Teses. 2. Minas a céu aberto. 3. Modelagem. 4. Geoestatística. 5. Análises de estabilidade. I. Fontoura, Sérgio Augusto Barreto da. II. Pontifícia Universidade Católica do Rio de Janeiro. III. Departamento de Engenharia Civil. IV. Título.

CDD 624

Ao meu Soberano Altíssimo Senhor Jeová, pois "Digno és, Jeová, sim, *meu* Deus, de receber a glória, e a honra, e o poder, porque criaste todas as coisas e porque elas existiram e foram criadas por tua vontade" (Revelação/Apocalipse 4:11).

Agradecimentos

Ao meu amado Deus Jeová por ter permitido que eu chegasse até aqui em minha vida, por ter cuidado de mim, e ter me guiado por bons caminhos ao longo deste curso que concluo agora, e ao longo da minha vida, pois "desde o ventre de minha mãe tens sido meu Deus" (Sal 22:10).

Ainda ao meu Soberano Deus, pela ajuda recebida através dos meus queridos pais e irmãos na fé; através das inúmeras pessoas maravilhosas que conheci na Universidade da qual sou originária – UERJ, e na Universidade onde me encontro agora – PUC-Rio, sendo que nesta a lista vai desde o pessoal da "Van dos Funcionários da PUC" até o pessoal do GTEP, passando pelo pessoal e professores do Departamento de Engenharia Civil; e por meio das instituições CAPES, VALE, na pessoa de Paulo R. Franca, Schlumberger, Rocscience, e do próprio GTEP, na pessoa do meu estimado orientador Sérgio A. B. da Fontoura, que sem as quais este trabalho não poderia ter sido realizado, e principalmente, pelo privilégio de ter levado o nome Dele a pessoas que nunca ouviram falar sobre ele, pois conforme está escrito: "como ouvirão, se não houver quem pregue?" (Ro 10:14).

Resumo

Damasceno, Cristiane Silva Rocha; Fontoura, Sérgio Augusto Barreto da. (Orientador) **Modelagem Geológica e Geomecânica 3D e Análises de Estabilidade 2D dos Taludes da Mina de Morro da Mina, Conselheiro Lafaiete, MG, Brasil.** Rio de Janeiro, 2008. 165 p. Dissertação de Mestrado – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

O trabalho propõe uma metodologia para elaboração de modelos geológicos e geomecânicos (3D) e realização de análises de estabilidade (2D) de taludes rochosos de minas a céu aberto, com base nos dados da mina de Morro da Mina, fornecidos pela empresa VALE, a qual esta pertence. A metodologia está dividida em duas etapas: modelagem e análises de estabilidade. Para a modelagem, foi utilizado o software Petrel 2004, que oferece ferramentas geoestatísticas, possibilitando a extrapolação das informações geotécnicas pontuais c', \u00e6', RQD, Q e RMR, obtidas por meio de testemunhos de sondagem, para o maciço inteiro. Utilizou-se a técnica de Krigagem Ordinária. O modelo gerado representou bem a distribuição destas propriedades no espaço. Na etapa de análise de estabilidade, foram utilizadas seções resultantes da modelagem geomecânica. Dois tipos de análises foram realizados: análises cinemáticas, com utilização do software Dips, da Rocscience, e análises por equilíbrio limite dos taludes globais e das bancadas, utilizando-se o software Slide 5.0, também da Rocscience. No primeiro tipo, realizado com dois conjuntos de mapeamentos diferentes, foi constatado que as bancadas devem receber bastante atenção nesta mina, e no segundo tipo, foi verificada a segurança quanto à ruptura circular das bancadas e taludes globais, porém recentemente ocorreu uma ruptura em um dos locais analisados. Os programas RocData 4.0 e RocProp, ambos da Rocscience, foram utilizados para estimar os parâmetros de resistência de Mohr-Coulomb, e os softwares AutoCAD 2004 e Microsoft Office Excel auxiliaram na preparação dos arguivos de entrada no Petrel 2004 e no Slide 5.0.

Palavras-chave

Minas a Céu Aberto; Modelagem; Geoestatística; Análises de Estabilidade.

Abstract

Damasceno, Cristiane Silva Rocha; Fontoura, Sérgio Augusto Barreto da. (Advisor) **Geological and Geomechanics Modelling 3D and Stability Analyses 2D of The Slopes of the Morro da Mina Mine, Conselheiro Lafaiete, MG, Brazil.** Rio de Janeiro, 2008. 165 p. MSc. Thesis – Department of Civil Engineering, Pontifícia Universidade Católica do Rio de Janeiro.

This work presents a methodology to develop geological and geomechanic models (3D) and to carry out stability analyses (2D) of rock slopes of open pit mine, based on data of Morro da Mina mine, provided by the mining company VALE. The methodology is divided in two stages: modelling and stability analyses. For the modelling, the software Petrel 2004, which allows the use of geostatistical tools, was used, being possible the spatial distribution of geotechnical information, obtained from borehole cores, for the whole rock mass. The technique of Ordinary Kriging was used. The modeled properties were the following: c', o', RQD, Q e RMR. The generated model represented well the spatial distribution of these properties. The stability analyses were carried out using 2D sections and the necessary rock mass parameters were obtained from the geomechanical model. Two types of analyses were carried out: kinematic analyses, with use of the software Dips, from Rocscience, and limit equilibrium analyses of the global slopes and the benches, where the software Slide 5.0, also from Rocscience was used. The Kinematic analyses, carried out considering two sets of joint orientations, suggested that the benches have to receive enough attention in this mine, and the limit equilibrium analyses for circular failure of the benches and global slopes indicated high factors of safety. However, before this work initiating a failure already had happened in one of the sections analyzed. The programs RocData 4.0 and RocProp, both from Rocscience, were used to estimate the Mohr-Coulomb strength parameters, and the programs AutoCAD 2004 and Microsoft Office Excel helped at the development of the input files in the Petrel 2004 and Slide 5.0.

Keywords

Open Pit Mines; Modelling; Geostatistics; Stability Analyses.

Sumário

1 Introdução	20
1.1. Motivação	20
1.2. Objetivo	21
1.3. Escopo	22
2 Caracterização e Modelagem de Maciços Rochosos de Minas a Céu	
Aberto	24
2.1. Considerações sobre Minas a Céu Aberto	24
2.2. Condicionantes dos Taludes de Minas	25
2.2.1. A Geometria	25
2.2.2. A Geologia Local	27
2.2.3. A Água Subterrânea	29
2.2.4. O Estado de Tensão nos Taludes	30
2.3. Caracterização Geomecânica de Taludes Rochosos	32
2.4. Propriedades de Resistência	34
2.4.1. Resistência das Rochas Intactas	34
2.4.2. Resistência das Descontinuidades	
2.4.3. Resistência de Maciços Rochosos	
2.5. Sistemas de Classificação de Maciços Rochosos	
2.6. Modelagem Geológica e Geomecânica de Maciços Rochosos	
2.7. Estabilidade de Taludes	48
3 Caracterização Geotécnica da Mina de Morro da Mina	52
3.1. Mina de Morro da Mina	52
3.2. Geologia da Área	54
3.2.1. Litotipos da Cava	58
3.2.2. Feições Estruturais	60
3.2.2.1. Bandamento Composicional S ₀	61
3.2.2.2. Xistosidade S _n	61
3.2.2.3. Clivagem de Crenulação S _{n+1}	62
3.2.2.4. Foliação Milonítica S_m em Zonas de Cisalhamento	63
3.2.2.5. Falhas/Fraturas	64
3.2.2.6. Eixos de <i>Boudin</i> δ_n	66

3.2.2.7. Eixos de Dobras β_n	66
3.3. Modelagem Geomecânica e Hidrogeológica da Mina	67
3.3.1. Investigações Geotécnicas da Área da Cava	67
3.3.2. Setorização Geomecânica do Maciço da Cava	70
3.3.3. Parâmetros Geomecânicos	71
3.3.3.1. Caracterização	71
3.3.3.2. Resistência	74
3.3.4. Ocorrência de Intemperismo	78
3.3.5. Investigações Hidrogeológicas da Área da Cava	79
3.3.5.1. Inventário dos Pontos D'Água	79
3.3.5.2. Análise Hidroquímica	80
3.3.5.3. Sistemas Aqüíferos	81
3.3.6. Parâmetros Hidrodinâmicos	82
3.3.7. Modelo Geomecânico Existente	84
3.3.8. Modelo Hidrogeológico Existente	84

4 Modelagem Geológica e Geomecânica 3D da Mina Utilizando o Software

Petrel 2004	86
4.1. Metodologia	86
4.2. Considerações sobre o Software Petrel	86
4.3. Análise dos Dados Recebidos	88
4.4. Material Utilizado na Modelagem	88
4.5. Arquivos de Entrada	89
4.6. Modelo Geométrico 3D da Mina	90
4.7. Upscaling dos Dados	92
4.8. Modelo Geológico 3D da Mina	93
4.8.1. Análise Crítica dos Resultados	98
4.9. Análise Geoestatística e Modelagem Geomecânica 3D da Mina	99
4.9.1. Análise Estatística	99
4.9.2. Análise Estrutural	102
4.9.3. Análise Crítica dos Resultados	108
4.9.4. Krigagem e Modelo Geomecânico 3D da Mina de Morro da Mina	109
4.9.5. Análise Crítica dos Resultados	115
5 Análises de Estabilidade dos Taludes da Mina	117
5.1. Mecanismos Potenciais de Ruptura	117
5.1.1. Estudo das Descontinuidades Preocupantes	117

5.1.2. Orientação dos Taludes em Relação às Descontinuidades	123
5.2. Análises de Estabilidade Cinemáticas	124
5.2.1. Análise Crítica dos Resultados	130
5.3. Análises de Estabilidade por Equilíbrio Limite de Seções Típicas	131
5.3.1. Análise Crítica dos Resultados	141
6 Conclusões e Sugestões	144
6.1. Conclusões	144
6.2. Sugestões	147
Referências Bibliográficas	149
Anexos	157

Lista de Figuras

Figura 2.1 – Esquema de uma mina com seus elementos (Abrão & Oliveira,	
2004)	26
Figura 2.2 – Parâmetros que definem a geometria de uma mina a céu aberto	26
Figura 2.3 – Superfície de ruptura complexa, governada pelas descontinuidad	es
menores e maiores, e as pontes de rocha (Hoek et al., 2000, modificada por Z	ſea
& Celestino, 2004)	29
Figura 2.4 – Resistência à Compressão Uniaxial e Classes de Alteração (Vaz,	,
1996)	34
Figura 2.5 – Estimativa de GSI para maciços rochosos fraturados (Marinos et	al.,
2005)	39
Figura 2.6 – Estimativa de GSI para maciços rochosos heterogêneos (Flysch)	
(Marinos et al., 2005)	40
Figura 3.1 - Localização da Mina Morro da Mina e todo seu complexo (VALE,	
2006)	53
Figura 3.2 – Produtos da mina (VALE, 2006). Figura a: LG13 – Minério de	
Manganês Carbonatado Granulado (entre 6,30mm e 75,00mm); Figura b: LF0)1 –
Minério de Manganês Carbonatado Fino (6,30mm)	53
Figura 3.3 – Cenário deposicional originador dos corpos de manganês	
(Geoexplore, 2005)	55
Figura 3.4 – Contato tectônico do minério de manganês sílico-carbonatado co	m
granitóide, envolvido por um dobramento isoclinal assimétrico, em zona de	
cisalhamento com biotita xisto carbonoso (Geoexplore, 2005)	57
Figura 3.5 – Diagrama estrutural de pólos de S_0 dos Setores da mina	
(Geoexplore, 2005)	61
Figura 3.6 – Diagrama estrutural de pólos de S_n dos Setores da mina	
(Geoexplore, 2005)	62
Figura 3.7 – Exemplos de Clivagem de Crenulação. Figura a: clivagem de	
crenulação observada na zona de charneira de uma dobra maior (as dobras n	10S
microlitons são simétricas); Figura b: clivagem de crenulação observada num	
flanco de uma dobra maior (as microdobras são assimétricas)	63

Figura 3.8 – Zona de Cisalhamento em biotita-feldspato-quartzo xisto, com	
porfiroblastos estirados e sombras de pressão em sua cauda	
(Geoexplore, 2005)	64
Figura 3.9 – Estilo de falhamento oblíquo em Zona de Cisalhamento, no biotita	a
xisto grafitoso (Geoexplore, 2005)	65
Figura 3.10 – Diagramas estruturais de planos de falhas para os setores da m	ina
(Geoexplore, 2005)	65
Figura 3.11 – Exemplo de slickenside. O bloco que assenta sobre a superfície	Į.
observada deslocou-se da esquerda para a direita, relativamente ao bloco	
inferior. A seta indica o sentido do bloco de cima	65
Figura 3.12 – Exemplos de Boudin. À esquerda: exemplo geral de boudin. À	
direita: Formas de boudinage em biotita xisto grafitoso - Mina de Morro da Mir	na
(Geoexplore, 2005)	66
Figura 3.13 - Em planta, dobramento isoclinal simétrico com eixos verticalizad	los
(Geoexplore, 2005)	67
Figura 3.14 – Posição dos 39 furos de sondagem efetivamente usados, em	
relação à mina	69
Figura 3.15 - Setorizações da mina: Geoexplore (2005) - Setores I, II e III; SE	3C
(2001) – Setores SW1, SW2, NW e NE	71
Figura 3.16 – Visualização dos taludes da cava com as direções cardeais e	
colaterais aproximadas (Vale, 2006)	78
Figura 3.17 – Visualização dos taludes da cava com as direções colaterais	
aproximadas (Vale, 2006)	79
Figura 3.18 – Visualização da posição das nascentes na cava da mina	80
Figure 4.1. Coometrie de Cove de mine de Marre de Mine	00
Figura 4.1 – Geometria da Cava da mina de Morro da Mina	90
rigura 4.2 – Visualização das posições das bocas dos turos e suas trajetorias	
Vista de cima da cava	91
Figura 4.3 – Visualização espacial das trajetorias dos furos de sondagens	91
Figura 4.4 – Informações ao longo dos turos de sondagens – RQD	92
Figura 4.5 – <i>Opscaling</i> RQD	93
Figura 4.6 – Sequencia de furos de sondagem e <i>Weir Tops</i>	94
rigura 4.7 – Horizons intermediários – vista do Sul	9/
Figura 4.6 - Horizons intermediarios - Vista do INOrdeste	98
rigura 4.9 – Transformação <i>ID Trend</i> para a variavel Q, Zona 3,	100
representando o ajuste mais difícil desta transformação – FG = 0,148/59	100

Figura 4.10 – Transformação 1D Trend para a variável RQD, Zona 1,	
representando o melhor ajuste desta transformação - FC = 0,70704	100
Figura 4.11 – Transformação Normal Score para a variável Q, Zona 1,	
representando o ajuste mais difícil desta transformação – Min = -1,592,	
Max = 6,69, σ = 0,99986	101
Figura 4.12 – Transformação Normal Score para a variável RMR, Zona 1,	
representando o melhor ajuste desta transformação – Min = -3,262,	
Max = 3,484, σ = 0,99986	102
Figura 4.13 – Semivariograma representando um mau ajuste para a Major	
<i>Direction</i> , variável RQD, Zona 1 – <i>Sill</i> = 0,785	103
Figura 4.14 – Semivariograma representando um bom ajuste para a Major	
<i>Direction</i> , variável C, Zona $1 - Sill = 1$	104
Figura 4.15 – Semivariograma representando um mau ajuste para a Minor	
<i>Direction</i> , variável RQD, Zona 3 – <i>Sill</i> = 0,724	104
Figura 4.16 – Semivariograma representando um bom ajuste para a Minor	
<i>Direction</i> , variável RMR, Zona 1 – <i>Sill</i> = 1	105
Figura 4.17 – Semivariograma representando um mau ajuste para a Vertical	
Direction, variável RQD, Zona $3 - Sill = 0,785$	105
Figura 4.18 – Semivariograma representando um bom ajuste para a Vertical	
<i>Direction</i> , variável PHI, Zona 3 – <i>Sill</i> = 1	106
Figura 4.19 – Modelo Geomecânico 3D da mina de Morro da Mina – RQD –	
vista de cima da cava	110
Figura 4.20 – Demais vistas e cortes da mina – RQD	110
Figura 4.21 – Modelo Geomecânico 3D da mina de Morro da Mina – Q –	
vista de cima da cava	111
Figura 4.22 – Demais vistas e cortes da mina – Q	111
Figura 4.23 – Modelo Geomecânico 3D da mina de Morro da Mina – RMR –	
vista de cima da cava	112
Figura 4.24 – Demais vistas e cortes da mina – RMR	112
Figura 4.25 – Modelo Geomecânico 3D da mina de Morro da Mina – c' (MPa)) —
vista de cima da cava	113
Figura 4.26 – Demais vistas e cortes da mina – c' (MPa)	113
Figura 4.27 – Modelo Geomecânico 3D da mina de Morro da Mina – ϕ^{\prime} (°) –	
vista de cima da cava	114
Figura 4.28 – Demais vistas e cortes da mina – ϕ ' (°)	114

Figura 5.1 – Comparações entre os resultados dos mapeamentos de foliações da Geoexplore (2005) e SBC (2001) 118 Figura 5.2 – Comparações entre os resultados dos mapeamentos de falhas/fraturas da Geoexplore (2005) e SBC (2001) 118 Figura 5.3 – Comparação entre os estereogramas das atitudes das descontinuidades levantadas nos mapas da SBC (2001) e Geoexplore (2005) -Setor SW1 119 Figura 5.4 – Comparação entre os estereogramas das atitudes das descontinuidades levantadas nos mapas da SBC (2001) e Geoexplore (2005) -Setor SW2 120 Figura 5.5 – Comparação entre os estereogramas das atitudes das descontinuidades levantadas nos mapas da SBC (2001) e Geoexplore (2005) -Setor NW 121 Figura 5.6 - Comparação entre os estereogramas das atitudes das descontinuidades levantadas nos mapas da SBC (2001) e Geoexplore (2005) -Setor NE 122 Figura 5.7 – Resultados das análises cinemáticas – Ruptura Planar 125 Figura 5.8 - Resultados das análises cinemáticas - Ruptura Planar e Cunha 126 Figura 5.9 – Resultados das análises cinemáticas – Ruptura em Cunha 127 Figura 5.10 – Resultados das análises cinemáticas – Ruptura por Tombamento – SW1, SW2 128 Figura 5.11 - Resultados das análises cinemáticas - Ruptura por Tombamento -NW, NE 129 Figura 5.12 – Setores da cava com seus respectivos tipos de ruptura possíveis 130 de ocorrer Figura 5.13 - Representação da localização das seções escolhidas para as análises de estabilidade 133 Figura 5.14 – Utilização dos parâmetros de resistência obtidos do Petrel 2004 no programa Slide 5.0 134 Figura 5.15 – Idealização das camadas de material no programa Slide 5.0, a partir dos resultados obtidos do programa Petrel 2004, para a propriedade \u00f6' 136 Figura 5.16 – Correlação entre os valores de ϕ ' (°) e γ (MN/m³) assumidos para as rochas da mina de Morro da Mina 136 Figura 5.17 – Esquema ilustrativo das etapas de definição de γ para as camadas de material no programa Slide 5.0 137 Figura 5.18 – Resultados das análises de estabilidade para a Seção SW1 138 Figura 5.19 – Resultados das análises de estabilidade para a Seção SW2 139

Figura 5.20 – Resultados das análises de estabilidade para a Seção NW140Figura 5.21 – Visualização dos resultados do Upscaling e da interpolação por142Krigagem da propriedade c'142

Lista de Tabelas

Tabela 2.1 – Métodos de Análise de Estabilidade por Equilíbrio Limite (De	
Campos, 1985)	50
Tabela 3.1 – Principais elementos estruturais presentes na mina	60
Tabela 3.2 – Resumo das sondagens rotativas	69
Tabela 3.3 – Setorização adotada em 2000 pela SBC (SBC, 2001)	70
Tabela 3.4 – Correlação entre os Graus de Resistência, Consistência, e	
Alteração (baseado em SBC (2004))	73
Tabela 3.5 – Parâmetros de Resistência estimados por SBC (2001)	74
Tabela 3.6 – Correlações para adoção do valor de GSI	75
Tabela 3.7 – Parâmetros de Resistência para as principais litologias da Mina	76
Tabela 3.8 – Coordenadas, cotas e vazões das nascentes da cava da mina	80
Tabela 3.9 – Parâmetros físico-químicos das nascentes da cava da mina	80
Tabela 3.10 - Parâmetros obtidos da interpretação do ensaio de bombeamen	ito
(T – Transmissividade, b – espessura saturada do meio, K – Condutividade	
Hidráulica, S – Coeficiente de Armazenamento) (MDGEO, 2001)	83

Tabela 4.1 – Tabela resumo dos ajustes dos semivariogramas para a Zona 1 106 Tabela 4.2 – Tabela resumo dos ajustes dos semivariogramas para a Zona 2 107 Tabela 4.3 – Tabela resumo dos ajustes dos semivariogramas para a Zona 3 107

Tabela 5.1 – Resultados esperados de acordo com a gênese das estruturas	
presentes na cava da mina de Morro da Mina	123
Tabela 5.2 – Dados para análise de estabilidade cinemática	124
Tabela 5.3 – Resumo dos resultados das análises cinemáticas	130
Tabela 5.4 – Resumo dos casos estudados	137

Lista de Símbolos

Constante Dependente das Características do Maciço Rochoso а b Largura da Bancada Coesão С c' Coesão Efetiva D Fator de Perturbação do Maciço Rochoso Eh Potencial de Oxirredução Em Módulo de Deformação do Maciço Rochoso FS Fator de Segurança Н Altura do Talude \mathbf{h}_{B} Altura da Bancada Altura Máxima da Inter-Rampa $h_{\rm B}$ h_0 Altura Máxima Global JCS Resistência à Compressão da Parede da Junta JRC Coeficiente de Rugosidade da Junta Κ Condutividade Hidráulica Valor Reduzido da Constante Petrográfica mi de Hoek-Brown para o mb Maciço Rochoso MR Índice de Módulo Potencial Hidrogeniônico pН r Largura da Rampa Constante Dependente das Características do Maciço Rochoso s S Coeficiente de Armazenamento Т Transmissividade Inclinação da Face da Bancada α_{B} Ângulo de Inter-Rampa α_{R} Ângulo Global α_{O} Peso Específico da Rocha do Maciço γ Desvio Padrão σ Resistência à Compressão Uniaxial do Maciço Rochoso σ_{c} Resistência à Compressão Uniaxial (ou Simples) da Amostra de σ_{ci} Rocha Intacta Resistência à Compressão Global do Maciço Rochoso σ'_{cm} σ'_1 Tensão Principal Maior Efetiva Tensão Principal Menor Efetiva σ'3

σ'_{3max}	Tensão Principal Menor Máxima Efetiva
σ_{n}	Tensão Normal Efetiva
σ_t	Resistência à Tração do Maciço Rochoso
τ	Resistência ao Cisalhamento
$ au_{f}$	Resistência ao Cisalhamento
φ	Ângulo de Atrito da Descontinuidade, ou da Rocha
φ'	Ângulo de Atrito Efetivo
φ _j	Ângulo de Atrito da Descontinuidade
φ _r	Ângulo de atrito Residual da Descontinuidade
ABGE	Associação Brasileira de Geologia de Engenharia
ABMS	Associação Brasileira de Mecânica dos Solos e Engenharia Geotécnica
В	Bancada
FC	Fator de Correlação
Geo	Geoexplore Consultoria e Serviços Ltda.
GSI	Geological Strength Index para o Maciço Rochoso
GTEP	Grupo de Tecnologia em Engenharia de Petróleo
ISRM	International Society for Rock Mechanics
KB	Kelly Bushing
MD	Measured Depth
NA	Nível d'Água, ou Nascente
PGTM	Projeto Geotécnico de Taludes de Mineração
Q	Quality
RDM	Rio Doce Manganês
RMR	Rock Mass Rating
RQD	Rock Quality Designation
SBC	Sérgio Brito Consultoria Ltda.
SMM	Sociedade Mineira de Mineração Ltda.
TG	Talude Global

"Sabedoria é a coisa principal. Adquire sabedoria; e com tudo o que adquirires, adquire compreensão", "porque melhor é a sabedoria do que os corais, e mesmo todos os outros agrados não se podem igualar a ela" (Pr 4:7; 8:11).